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FERMAT'S LAST THEOREM (CASE 1) 
AND THE WIEFERICH CRITERION 

DON COPPERSMITH 

ABSTRACT. This note continues work by the Lehmers [3], Gunderson [2], Gran- 
ville and Monagan [1], and Tanner and Wagstaff [6], producing lower bounds 
for the prime exponent p in any counterexample to the first case of Fermat's 
Last Theorem. We improve the estimate of the number of residues r mod p2 
such that rp r mod p2, and thereby improve the lower bound on p to 
7.568 x 1017 

1. INTRODUCTION 

The first case of Fermat's Last Theorem (FLTI) is the statement that, for any 
odd prime p, the equation xP +yp = zP does not have integer solutions where 
none of x, y, z is divisible by p. The generalized Wieferich criterion (for 
given q) is the statement that if FLTI fails for some prime p, then qP q mod 

2 
p . This criterion has been proved [1] for all q E W = {2, 3, 5, 7,..., 89}, 
the first 24 primes. It trivially holds for q = -1 or 0, so for convenience we 
write W = Wu {-1, 0} = {-1,0,2, 3, 5, 7, ... , 89}. 

The number of distinct pth powers (mod p2) is only p, since (a+bp)p ap 
(mod p2). If p violates FLTI, the generalized Wieferich criteria (for all q E W) 
can produce a large number of distinct pth powers (modp 2), and when this 
number exceeds p, we establish FLTI for p. 

The following lower bounds for the number of distinct pth powers (mod p2 
have been established: 

* of(p, W), the number of integers in [o, p2 _ 1], all of whose prime 
factors lie in W ("smooth integers"); 

* f2(p, W), the number of smooth integers in [_(p2 _ 1)/2, (p2 _ 1)/2] 
[4]; 

* f3 (p, W), the number of pairs of relatively prime smooth integers 
(a, b) with -p/ x < a < p/x and 1 < b < p/x [2]. 

To these we add a new bound, 
* f4(p, W), the number of pairs of relatively prime smooth integers 

(a, b) with b > 0, such that a2 + b2 <p2. 
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Clearly f4(p, W) > f3(p, W). 

Theorem 1. There are at least f4(p, W) distinct pth powers r (mod p 2), if 
p W. 

2 Proof. Each pair (a, b) counted by f4(p, W) gives rise to a residue r mod p 
2 2 such that a _ br mod p . Since both a and b are pth powers (mod p ), r 

is also. 
Suppose two such pairs, (a1, b1) and (a2, b2), give rise to the same value 

of r (mod p 2). Then from 

a1 = b1r (mod p2), a2 - b2r (mod p2) 

we obtain 
a2b1-=blb2r alb2 (modp2), 

whence 

( 1 ) a2b1 -a1b2-0 (modp). 

As vectors in R3, both (a1, b1, 0) and (a2, b2, 0) have norm less than p, so 
2 the magnitude of their cross product, 1a2b1 - a1 b2l , is less than p . Together 

with (1), this implies a2b1 - a1b2 = 0. So a1/bI = a2/b2 as rational numbers. 
Since ai and b are relatively prime, both fractions are reduced to lowest terms, 
and b1 > 0 implies that both have positive denominators. Thus (a1, b1) = 

(a2, b2). 
This implies that distinct pairs (a, b) counted by f4(p, W) give rise to 

distinct pth power residues r (mod p ). n 

2. GENERATING FUNCTION 

To obtain an effectively computable lower bound f4 (p, W, a) for f4 (p, W), 
we use a generating function on two variables. We select a real number a > 

1, and an integer N such that a N exceeds the desired bound on p, and 
such that our computer can handle an array with N2 elements. We define the 
generating function 

C(x, y) = EEcij X 
i>o j>o 

by 

(2) C(x, y)= iC ( Flog q1 [ Y~log,, q'1 + 
ew > 1 1> 1 

We will compute the coefficients cij for 0 < i < N, 0 < < N. 

For each positive smooth integer a = qw -q(lq), define the index 

ind(aE, a) = E [logida )q) a 

qew 
Evidently, ind(a , al) > loga a . 
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Lemma 2. The coefficient cij counts pairs of relatively prime smooth positive 
integers (a, b) such that 

i = ind(a, a), j = ind(b, a). 

Each pair (a, b) is counted in only one coefficient cij. 
Proof. This follows by the properties of generating functions. In the definition 
of C(x, y), the factor 

(ExFlag q I yFlog, 
l 

+ I 
1>1 ~~~~1>1 

corresponding to a given q E W, expresses the condition that q may either 
appear in a (to some positive power) or in b (to some power) or in neither 
(but not both, since a and b are relatively prime). E 

Corollary 3. We have 

f3(p,W)>2E co , 
0<i<I 0<j<J 

where I = J = [log, (p/ X'2)1 - 1. 

Proof. Each pair (a, b) counted by one of the cij satisfies 

log,(p/x/2) > I > ind(a, a) > loga a, 

so that p/x/ > a. Similarly, p/x/ > b. The pair (a, b) corresponds to two 
pairs counted by f3(p, W), namely (a, b) and (-a, b) . E 

Define 

f4(p 5W )=- 2. E ci 
i'j 

( 
2 

+( )2 <p2 

Corollary 4. For a > 1 we have f4(p, W) > f4(p, W.a). 

Proof. Each pair (a, b) counted by one of the cij satisfies 

p2 > (ai)2 (aj)2 ( ind(aa))2 + ( ind(b,a))2 a2 b2 

so that (a, b) and (-a, b) are counted in f4(p, W). 0 

Theorem 5. If f4(po, W, a) > P1 > po, then FLTI holds for all p in the range 

po ?P <PI. 
Proof. For fixed values a and W, f4(p, W, a) is monotone nondecreasing 
in p. For p in the indicated range, 

f4(pW)>f4(pW.a)>f4(poW.a)p> p P>P 

Procedure. Build the array of cij, using the standard techniques for computing 
generating functions. Starting with a known lower bound for FLTI, such as 
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p0 = 101, repeatedly evaluate Pk = f4(Pk- 1 Ur, a), as long as Pk > Pk-l I 
When the process converges (Pk = Pk- 1) we have found a lower bound Pk on 
any counterexample p to FLTI. 

3. RESULTS 

We tried various values of a and got different lower bounds for the case 
W - {2, 3, 5, ..., 89}; these are tabulated below. 

alpha bound (q = 89) size of array 

1.08 6.037el7 532 x 532 
1.05 6.608e 17 841 x 841 
1.045 6.999e17 934 x 934 
1.041616011 7.040e17 1008 x 1008 
1.026004485 7.568e1 7 1604 x 1604 

The last two values of a correspond to the 17th and 27th roots of 2, respec- 
tively. Our bound of p > 7.568 x 1017 compares with the bound of 1.56 x 1017 
obtained in [6] by estimating f3. Only a small part of the improvement can 
be attributed to our use of f4 instead of f3. The main improvement came 
from our use of the generating function C(x, y), whereas [6 and 2] had used 
an analytic approximation to f3. 

The following table compares Gunderson's results, those of Tanner and Wag- 
staff [6], and our results for a = 1.08 and a = 1.05, respectively. The first 
two columns are from [6]. For the last two columns we used an array of size 
1024 x 1024. 

Tanner- ours ours 
q(n) Gunderson Wagstaff (a = 1.08) (a = 1.05) 

3 9.310eO1 1.31 leO2 2.060eO2 2.100eO2 
5 8.614e02 1.392eO3 2.554e03 2.578eO3 
7 7.616eO3 1.307eO4 2.560eO4 2.642eO4 

11 5.273eO4 9.481eO4 1.972eO5 2.033eO5 

13 3.503eO5 6.613eO5 1.386eO6 1.452eO6 
17 2.032eO6 4.081eO6 9.224eO6 9.575eO6 
19 1.136eO7 2.452eO7 5.656eO7 5.958eO7 
23 5.755eO7 1.359eO8 3.279eO8 3.445eO8 
29 2.564e08 6.796eO8 1.740eO9 1.800eO9 

31 1.1 OeO9 3.349eO9 8.859eO9 9.321eO9 
37 4.343eO9 1.533eO0 4.199eO0 4.428eO0 
41 1.601eO0 6.773eO0 1.931e 1 2.021el 1 
43 5.744e 10 2.959e 11 8.849e 11 9.135e 11 
47 1.948e 1 1.252e12 3.827e12 4.000e12 

53 6.110el I 5.065e12 1.568e13 1.663e13 
59 1.779e12 1.968e13 6.315e13 6.752e13 
61 5.026e12 7.588e13 2.514e14 2.669e14 
67 1.320e13 2.827e14 9.807e14 1.033e15 
71 3.290e13 1.033e15 3.661e15 3.880e15 
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Tanner- ours ours 
q(n) Gunderson Wagstaff (c = 1.08) (a = 1.05) 

73 7.906e 13 3.755e 1 5 1.363e 16 1.456e 16 
79 1.762e14 1.326e 16 4.992e 16 5.347e 16 
83 3.697e 14 4.61 Oe 16 1.748e 17 1.908e 17 
89 7.145e14 1.564e17 6.037e17 6.608e17 
97 1.242e 1 5 5.150e 17 2.051 e 18 2.286e 18 

101 1.985e15 1.674e18 6.954e18 7.538e18 
103 2.926e15 5.419e18 2.327e19 2.535e19 
107 3.835e15 1.732e19 7.534e19 8.273e19 
109 4.408e 1 5 5.516e 19 2.434e20 2.736e20 
113 4.107e15 1.736e20 8.045e20 8.858e20 

127 2.321 e 1 5 5.248e20 2.442e21 2.734e21 
131 2.686e14 1.571e21 7.593e21 2 

137 4.640e21 2.272e22 
139 1.365e22 6.73 1e22 
149 3.926e22 1.967e23 

151 1.125e23 5.752e23 
157 3.188e23 1.676e24 
163 8.926e23 4.839e24 
167 2.481e24 1.344e25 
173 6.826e24 3.870e25 

179 1.858e25 1.064e26 
181 5.046e25 2.920e26 
191 1.347e26 7.929e26 
193 3.588e26 2.153e27 
197 9.502e26 5.841e27 

199 2.509e27 1.582e28 
211 6.51 le27 4.236e28 
223 1.661 e28 1.084e29 
227 4.218e28 2.769e29 
229 1.068e29 7.329e29 

Gunderson's gives no bound for larger W . 
2 Our method ran out of storage (1024 x 1024) at q = 131 for a =1.05 . 

4. DiscuSSION 

Granularity. Our lower bound f4(p, W, a) underestimates f4(p, W) to the 
extent that the logarithms are rounded up to integers in (2). That is, the in- 
tegers qI are rounded up to integral powers of al. These powers of a are 
sparsely distributed among the real numbers. The coarseness of the resulting 
approximation is analogous to granularity in a photograph. 

We can lessen the effect of this granularity by choosing a closer to 1 the 
error approaches 0 as a approaches 1-but at the expense of increasing N, 
and therefore increasing the amount of storage necessary. 

As an example of this effect, consider the computation of f4(p, W, a) for 
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p = 208, W = {-1, 0, 2, 3}, and the two choices of a upon which our 
tables are based: 1.08 and 1.05. First let a = 1.08 and (a, b) = (1, 192). 
We find log1008 64 = 54.039 and log1008 3 = 14.275. To be conservative, the 
computation in (2) has rounded both logarithms up, to 55 and 15, respec- 
tively. Then the point (a, b) = (1, 192) is counted in the coefficient cO 70, 

which means it is being estimated as (1, 1.08 55+5) (1, 218.6). This is too 
2 2 2 

large for the bound p = 208: 1 + 218.6 > 208 . In fact, the four points 
(? 1, 192) and (? 192, 1) are discarded by this rounding procedure. For this 
reason we find that f4(p, W. 1.08) = 206 underestimates f4(p, W) = 210. 
Selecting a = 1.05, we correctly include these four points: log 3 05 3 = 22.517, 

1og 105 64 =85.240, 1.0523+86 = 204.001 , and 12 + 204.001 < 208 . We find 
that f4(p, W, 1.05) = 210 = f4(p, W) . 

Monotonicity. For a fixed value of al, as W grows (the Wieferich criterion is 
proved for more values of q), our estimate f4(p, W. a) increases, as does 
f4(p, W). In the expression defining C(x, y), the term 1 in the factor corre- 
sponding to a new value of q ensures that the new values of cij are at least as 
large as the old ones, and the other terms increase the values. (This is in con- 
trast to the behavior of the methods in [2], where the addition of new primes 
to W sometimes decreased the size of the attainable bounds. This behavior is 
discussed in [5].) Of course, to attain these bounds, we must deal with larger 
arrays, and the computer storage becomes a consideration. 

For a fixed array size N, to prove larger bounds for larger estimates of W, 
we must use larger values of aO, and it is quite possible that the granularity will 
make it impossible to prove larger bounds after a while. 

5. IMPROVEMENTS 

If we select a value of ,u such that 1 < ,u < (4/3)1/4, and consider two disks 
of radius p~u and p/hu, respectively, then we can get another estimate of the 
number of distinct pth powers (mod p 2). This has not given an appreciable 
improvement in the result. 

Lemma 6. If 1 < ,u < (4/3)1/4 then the number of distinct pth powers r 
(mod p 2) is at least 2 [f4(p/lp, W) + f4(ppu, W)]. 

2~~~~~~ 
Proof. We fix a pth power r (mod p 2) and ask what points (a, b) inside either 
disk represent r in the sense that a br (mod p 2), a and b are relatively 
prime smooth integers, and b > 0. We assert that r (mod p 2) can be rep- 
resented by either (1) one point in the upper half of the smaller disk, or (2) 
at most two points in the upper half of the annulus (the larger disk minus the 
smaller disk), but not both. 

If we have a point (al, bl) in the upper half of the smaller disk and another 
point (a2, b2) in the upper half of the larger disk, their norms are bounded 
by p/lu and pu , respectively, so the magnitude of their cross product is less 
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than p2 . As before, if both points represent r, then al /bI = a2/b2 as rational 
numbers, whence (al, bl) = (a2, b2) . 

Suppose we have three points in the upper half of the large disk, P1, P2, 
P3, all representing r. Order the points in the counter-clockwise direction, and 
let 0 be the angle subtended by Pi and P. at the origin. We have either 

0~~~~~~~~~~~~~~~~~~ 0 < 612? /3 ? 0?23?/3, or 27/3 ? 13 ?U. So for some i : j we 
have 0 < sin Oj < x/3-/2. The magnitude of the cross product jaib1 - aibil is 
bounded by 

(p u)(pu) sin i <P p2P2 (X_/ 2) < p2. 

Again, since both Pi and P. represent r, this implies that the two points are 
equal: (ai, bi) = (aj, b1). 

Thus, if we count the pairs (a, b) of relatively prime smooth integers with 
b > 0 in the smaller disk, and add half the number of such pairs in the upper 
half of the annulus, we will obtain a lower bound on the number of distinct pth 
power residues r (mod p2) . This count is 

f4(p/l, W) + 2[f4(Py, W) - f4(p/l, W)] = 2[f4(P/ly, W) + f4(p, W)]. O 

Another idea is to define an increasing sequence of positive integers yj and 
let cij count points for which a < y, b < yj (i.e., y2 is playing the role of 

a'). For example, we could have y = i + 1, 0 < i < 40, and subsequent 
values could grow as c* a'. This would eliminate some wasted storage. Then 
a could become smaller (for a fixed amount of storage), and we would suffer 
somewhat less from the granularity of powers of a. We have not implemented 
this improvement. 
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